Technical Editor:

Marcin Paprzycki

Dept. of Computer Science and
Statistics

Univ. of Southern Mississippi
Southern Station 1506
Hattiesburg, MS 39406-1506
m.paprzycki@usm.edu

Structured Development of
Parallel Programs

By Susanna Pelagatti

248 pages

$44.95

Taylor & Francis

London

1997

0-7484-0759-6

© 1999 Institute of Electrical and Elec-
tronics Engineers. Reprinted, with per-

mission, from IEEE Concurrency.

This material is posted here with
permission of the IEEE. Such permis-
sion of the IEEE does not in any way
imply IEEE endorsement of this book.
Internal or personal use of this mate-
rial is permitted. However, permission
to reprint/republish this material for
advertising or promotional purposes
or for creating new collective works
for resale or redistribution must be
obtained from the IEEE by sending a
blank e-mail message to info.pub.
permissions@ieee.org.

By choosing to view this docu-
ment, you agree to all provisions of

the copyright laws protecting it.

Structured Development of
Parallel Programs

Reviewed by Andrzej Stachurski, Warsaw University of Technology

Structured Development of Parallel Programs
presents a structured programming methodol-
ogy for parallel computations that ensures
portability, programmability, and good perfor-
mance. The book’s ultimate goal is to develop
a suitable programming language for parallel
programming and its compiler. This language
is meant to deliver typical parallel constructs
(skeletons) and their realizations (templates) on
various architectures.

The book’s first half presents a critical analy-
sis of the state of the art of parallel software
development. It also closely examines several
existing approaches to parallel programming,
concluding that template-based systems are the
best compromise. In this approach, the pro-
grammer selects skeletons and their conver-
sion rules, then uses them to build a program.
Its performance might not match that of a low-
level graph-based approach, but it is pre-
dictable and easily ensures programmability
and portability.

The book’s second half describes the P3L.
template-based methodology and its realiza-
tion as the P3L language and its compiler,
offering application examples. The author
maintains that the template-based system
gives rise to accurate performance models for
the skeletons library designer as well as for
the programmer. The technical and mapping
details are left to the skeleton library designer,
who can fully exploit specific properties of
particular skeletons. The P3L methodology
incorporates a small set of basic skeletons and
their combination rules. Skeleton selection is
based on the analysis of existing approaches.
The skeletons reflect typical constructs that
parallel program designers use.

The P3L methodology might be a good
starting point for developing efficient high-
level languages for parallel programming. It
suggests how to ensure compromise between
performance and portability and programma-
bility. In any case, we should not treat it as
something closed and finally established—
high-level parallel programming languages
continue to develop and improve.

Such high-level languages would let the
programmer concentrate less on the details
of the machine’s architecture and more on
the algorithm’s design. The lack of high-level
languages is one of the major obstacles ham-
pering large, complex software projects and
the development of computational algo-
rithms. Currently, the progress of these lan-
guages is severely delayed compared to the
pure parallel hardware performance. An effi-
cient, high-level language for parallel pro-
gramming available on computers with par-
allel processors and on clusters of machines
used for distributed computations would be
an important tool for people developing gen-
eral theoretical and application-oriented
algorithms.

This book should interest people working
on parallel algorithms, but, more impor-
tantly, it should interest researchers and
software engineers developing languages for
parallel computations. It might also be of
interest to both undergraduate and graduate
computer science students because it does
not require any special background. It can
supplement material for courses devoted to
programming languages and compilation
techniques, especially for high-level parallel
programming.

88

IEEE Concurrency

In computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express
algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of
different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs
can execute. The implementation of a parallel programming model can take the form of a library invoked Start by marking
a€oeStructured Development of Parallel Programsé€ as Want to Read: Want to Read savinga€| Want to Read. Currently Reading.
Read. Structured Development by Susanna Pelagatti. Other editions.A We&€™d love your help. Let us know whata€™s wrong with this
preview of Structured Development of Parallel Programs by Susanna Pelagatti. Problem: 1t&€™s the wrong book 1ta€™s the wrong
edition Other. It also addresses the organizational structure. Programming model is the top layer. Applications are written in
programming model. Parallel programming models include 4”.A Development of programming model only cannot increase the
efficiency of the computer nor can the development of hardware alone do it. However, development in computer architecture can make
the difference in the performance of the computer. We can understand the design problem by focusing on how programs use a machine
and which basic technologies are provided.A Parallel Computer Architecture - Models. Parallel processing has been developed as an
effective technology in modern computers to meet the demand for higher performance, lower cost and accurate results in real-life
applications. The pipeline pattern provides for the rst structured parallel programming approach to MCTS. Moreover, we propose a new
lock-free tree data structure for parallel MCTS which removes synchronization overhead.A Much effort has been put into the
development of parallel algorithms for MCTS to reduce the running time. The efforts have as their target a broad spectrum of parallel
systems; ranging from small shared-memory multicore ma-chines (CPU) to large distributed-memory clusters.A In this paper, a
structured parallel programming approach is used to develop a new parallel algorithm based on the pipeline pattern for MCTS. The idea
is to break-up the iterations them-selves, splitting them into individual operations, which are then parallelized in a pipeline. Parallel
programs are more difficult to develop and reason about than sequential programs. There are two broad classes of parallel programs:
(1) programs whose specifications describe ongoing behavior and interaction with an environment, and (2) programs whose
specifications describe the relation between initial and final states. This thesis presents a simple, structured approach to developing
parallel programs of the latter class that allows much of the work of development and reasoning to bead€] CONTINUE READING. View
PDF.

